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Hamiltonian formulation of the nonlinear coupled mode equations
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We derive a canonical Hamiltonian formulation of the nonlinear coupled mode equé@bts that govern
the dynamics of pulse propagation in a one-dimensional, periodic Kerr medium when the frequency content of
the pulse is in the vicinity of a photonic band gap, and sufficiently narrow relative to a carrier frequency. The
Hamiltonian is equal to the energy in the electromagnetic field. We show that even for large photonic band gaps
(25% of the Bragg frequengythe CME give an excellent approximation to the dispersion relation of the
linear, periodic medium. This suggests that two- and three-dimensional photonic band-gap materials, which
necessarily have large index contrasts, might be effectively described by a set of generalized CME.
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[. INTRODUCTION In this paper, we investigate the predictions of the linear
CME in the presence of a strong index contrast for a one-

Investigators of optical pulse propagation in one-dimensional system. The linear CME make a very clear pre-
dimensional, isotropic, Kerr nonlinear media, with a periodicdiction for the dispersion relation of the periodic medium
variation in the linear index of refraction, often use a set of 1,8]. We compare this prediction with the exact dispersion
heuristic nonlinear coupled mode equati¢6$1E) [1—4]. In relation for a periodic media with very large photonic band
the derivation of these equations it is typically assumed tha@aps. Even when the width of the photonic band gap is 25%
the index contrast of the periodic variation is very small rela-0f the Bragg frequency, we find that the coupled mode equa-
tive to the average effective index of refraction. With the tions predict the group velocity and group velocity disper-
introduction of photonic band_gaPBG) materials which, at sion of the system to within about 10% in the region where
least in two or three dimensions, require the use of stronghey would be expected to hold. This agreement between the
index contrast§5,6], the nonlinear CME have recently been CME and the exact solutions suggests that the CME will
derived using the underlying Bloch functions of the periodictemain useful as a heuristic guide to nonlinear pulse-
medium as an expansion basis, which allows for the treatPropagation experiments even in the presence of very strong
ment of gratings with higher index contra$%8. index contrasts.

In this paper, we present a canonical Hamiltonian formu- AN outline of the rest of the paper is as follows. In Sec. I,
lation of the nonlinear CME in one dimension. Bgnonical ~ We rewrite Maxwell’s equations for a one-dimensional, peri-
we mean that our Hamiltonian can be used to derive th@dic, Kerr nonlinear medium in a canonical Hamiltonian for-
exact equations of motion using canonical commutation remulation, using a dual field introduced earlier by others
lations, and that it is numerically equal to the energy of the [9-12. In Sec. I, we define effective fields, in terms of
(nonlineay electromagnetic field. The CME that we presentWhich we write a reduced Hamiltonian that generates the
are equivalent to those derived earlier for strong gratinggionlinear CME. In Sec. 1V, we rewrite the reduced Hamil-
[7,8], but our approach has two distinct advantages_ First, th@nian in terms of fields that have a familiar interpretation as
Hamiltonian formulation allows for ease in quantizing the traveling waves. In Sec. V, we compare the approximate dis-
theory; this we do not do here, but defer to a later publica®ersion relation predicted by the CME to the exact dispersion
tion. Second, the Hamiltonian formulation aids in the identi-relation of the periodic system. In Sec. VI we conclude.
fication of symmetries and their relation to conserved quan-
tities at the effective field level. In particular, we use the Il. CANONICAL FORMULATION OF MAXWELL'S
reduced Hamiltonian to identify two more conserved quanti- EQUATIONS
ties: the momentum, associated with space-translation sym- ) ) ] ]
metry, and a conserved charge associated with phase- We begin by introducing a dual field(z,t) [9-11], that

translation symmetry9]. satisfies
It is hoped that the convenience and physical insight of a
coupled-mode approach will carry over to higher- 9, A=D, 4A=—H, (1)

dimensional PBG materials, but there are two reasons why it

might not: first, the dispersion relation of a two- or three-whereD andH are the electric flux density and magnetic
dimensional PBG material is often quite complicated, so thafield strength familiar from Maxwell's equations. We assume
there may be no regions where the nonlinear CME would béhat the medium of interest is nonmagnetic= wq, the per-
applicable; second, even were the dispersion relation suffineability of free spageand periodic with periodi. In the
ciently well-behaved that use of the CME could be consid-absence of nonlinearity, we can determine the Bloch func-
ered, the large index contrasts involved might cast the validtions of the system using the usual anddiz],

ity of the linear predictions of the CME into doubt. A full '

analysis of the three-dimensional problem has yet to be done. A(z,t)x GM(Z)G_Iw#t-F c.c., 2
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where the amplitudes,,,(t), are the classical analogue of
raising and lowering operators. We now specialize to a Kerr
nonlinear medium, and assume that the nonlinearity is weak:
eoxPE3<¢E, wherey® ande, the nonlinear susceptibil-
ity and linear permittivity of the medium, are assumed to be
B oy, periodic: X(3)_(z)=_x(3)(z+d) and £(2)=g(z+d). Under
§ @ _IA Phtonic Bandi these approximations, Maxwell’s equations can be written as
£ o (9]
F Yo
H=H_+HyL (6)
with
HLZE hwmk|amk|21 ()
mk
) H h?eq JL/Z X2(2)
-1.0 0.0 1.0 i z
N e e e(2)
Wave number k/(m/d)
o . N 4 (8m O +C.C)
FIG. 1. Sketch of a dispersion relation for a one-dimensional, « 2 M
periodic medium. Identified on the graph are the Bragg frequency =1 mki ’

Omik;

and Bragg wave number of the system. We label the quantities
Wui @ik, andA used in the text. We show the lowest-order pho-\yhereH, is the portion of the full Hamiltonian that gener-
tonic band gap, so that=1, u=2, andko=/d. ates the linear dynamics of the electromagnetic fieldtagd

) is the portion that generates the nonlinear dynamics. Here
where c.c. stands for “complex conjugate.” From Bloch's js numerically equal to the energy of the electromagnetic
theorem13], we can write our Bloch functions in terms of a field in the presence of the material medium. The mode am-
discrete band inder, and a reduced wave numbér,with  plitudes satisfy commutation relations
—m/d<ks=m/d, so for theg, we have )
, [ami(t), 8 (1) 1= Omny Sk » 8

Omi(2) = umk(z)elkza 3
[am(t),am i (1)]=0,

where theu,,, have the periodicity of the latticay,(2) : . :
=Um(z+d). We note thatw = wm—) , SO we can choose and canonical equations of motig8],

our Bloch functions such that,(z) = 0;;(_,(). We normal- day,
ize the Bloch functions via =50 = 7 [@mcH, €)
L/2 H H
which give
J_ On(2) Oy (242N S (4) 9
dame . i heg (L2 Opix®
wherelL is a normalization length, and where we have cho- dt ' @Omi@mit! ANZu2) -1 Z‘/wmkg4
sen the normalization constaNt=L/d, which is then iden-
tified as the number of unit cells in the normalization length. (@mk, Opo i+ C.C)
This choice of normalization means that our wave numbers X H — |, (10
take on only discrete values, and that the difference between =1 mik Omk;

two adjacent wave numbers isr2L. A typical dispersion
relation in this reduced-wave-number scheme is sketched iwhere we have suppressed thedependence oby,(2),
Fig. 1. Shown in the figure are the quantities, w,o, i,  XX(2), ande(z), and the time dependence @f,(t).
andA, as well as a photonic band gap of the system, all of
which will be discussed later in the text. Ill. THE COUPLED MODE EQUATIONS

In the presence of nonlinearity, we use the Bloch func-

tions of the underlying periodic medium as an expansion N this section, we subject our Hamiltonia) to a series
basis for the dual field, of approximations that are relevant to pulses that we wish to

describe by the nonlinear coupled mode equatiatis We

assume that the frequency content of the pulse is entirely

A(zt)= a ()6 (2)+c.cl. contained in the two bands=u,|, wherem=u refers to the
(2 % k:Zw/d 2N,uowmk[ m(t) Ornk(2) | band just above the given photonic band gap, andl re-

(5)  fers to the band just below the gap. Because of this assump-
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tion, we can consider a Hamiltonian that includes contribu- R 5 ) . 5
tions only from them=1,u bands without introducing any HL:; {ﬁwuk7k+ﬁw|kﬁk}gukguk+; {fh oy
appreciable error into our expression for the total energy in
the electromagnetic field. We also assume that the frequen-

cies and wave numbers in the pulse of interest are close to a +houBeldidk— iﬁ; Bryd wuk— i}
photonic band gap of the system, where the meaning of
“close” will be made more precise in the following. To char- X (Qukdi— 95 i) (15)

acterize the band gap, we define the gap width,and the

Bragg frequencyw,, which is the frequency at the center of  In order to construct a reduced Hamiltonian that will de-

the gap, rive the appropriate coupled mode equations, we assume that
the frequencies in the upper and lower bands in the disper-

(12) sion relation are symmetric about the Bragg frequengy,

A=(wy — o, ),
uko - ko so that

1 A
w0= 5 (wui+ w1y, wu= wot 5 +1(K), (10

where Wuk, is the frequency at the upper edge of the band W= wo— %_f(K),
gap,w, is the frequency at the lower edge of the band gap,

and kq can take on the value 0 ar/d depending on the where we have introduced the wave-number detuning
photonic band gap of interest. The quantities Duky Dlky:

andA are indicated in Fig. 1. The photonic band gap in the

figure is the lowest-order gap, so that 1, u=2, andko The form of f(K) can be determined in the following man-

=/d. -
We now make the transition from the mode amplitudesner' We write

K=k—ko. (17)

a) anda,, to new mode amplitudegy,, andg,, that are A Jo
more amenable to a coupled mode equation formulation. o= v+ —)+(—“"J )K
These new mode amplitudes are defined via the Bogoliubov 2 ok K=0
transformation
1 &zwukl 2
. + - Koo, (18
auk= Yk9ukt 1 BiDik » (12 ANS Ko
a1 =1+ BGuc, Because we are evaluating the derivatives at the band edge,

we know that the first derivative ab, is zero. In the Ap-

pendix, we show that
wherey, and B, are assumed to be real. We show below that

our theory is valid whemg,|<|yy| so that from Eqs(12) it Py, lv,|2
is clear thatg ) is composed mostly ) with only a ~lk=0=2 Ag [1+0(7)], (19)
small component o,y . This field definition is consistent ak

with previous analyses of the CMK,8] where it has been )

shown that the fields in the CME are mixtures of fields thatVNere we have introduced the smallness paramefer
are contained in the upper and lower bands of the dispersion 2/ ®@o, and where

relation. We impose canonical commutation relations on the

Juk andg., c? a1 | [0 o [0
%Zz—wc)fonz—(z) oz | Ve Ouikg| 57| |92

(9.0 1=[9uk,0! 0 1= S » (13) (20

. o . plays the role that a “velocity matrix element” would in a
with all other commutators vanishing. Since tg anday,  theory of electrons in a periodic potentfdl4]. To the same
also satisfy such commutation relatio(®, this leads to a order

restriction on the values of thg, and g3y,

52w|k| _ |vgl?
Ve -1 19 Wl —Tra ol @

When we writeH, (7) in terms of theg,, andg)x using Egs.  Our goal is to derive a simplified form for the Hamiltonian
(12 we find a reduced Hamiltoniaii®, that generates the (15) accurate to order?. To this end we now place a re-
linear dynamics of the electromagnetic field, striction on the maximum allowable value Kfby asserting
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that K g/ (m/d)=0(72), a choice we discuss in more detail replaced byK[1+f(K)/A]"2 To ignore the dynamics de-
after Eq.(25) below. We truncate Eq18) after the second scribed byf(K)/A, we require {(K)/A)=0(7), which, in
derivative term:; this is justified because the dispersion relaturn, requiresK .,/(m/d)=0(»*?). Were we to choose this
tion is even abouk,, so that the odd derivatives vanish, and restriction onK,,,,, then we could still recover the same
because the largest value of thiith term in the expansion Hamiltonian(25), but the terms irH{ that we ignore would
(18) will be proportional tof K pa,/(7/d)N=0(7") and can  be O(#%?) rather tharO(#?). So if we are considering only
thus be ignored at the level of perturbation that we are coan, as we do in Sec. V, then the conditidfy,,,/(7/d)

sidering here. Comparing the form 6fK) [Eqg. (16)] to Eq.
(18) and(19), we find that to lowest order

£ = ol K 22
(K)=—% (22
We note that the quantityvy=wy/(7/d), so that
F(K ma/A=0(77).
We next impose the condition
2 2__
OukYk T OBk = uky (23

oYt ouBi= o,
on vy, and B,; because of Eq(14), this is consistent with

Egs.(16). Then, using Eqgs(16) in Egs.(23), and recalling
the normalization condition oy, and By (14), we find

_[A+T(K) 3 f(K) ”
"ENE2fRy AT Nararw @Y

Given the definition(22) of f(K), it is clear thatB,/yy
=0(7). Using these definitions of, and By (24) and the

expression forf (K) (22) in the expression for the reduced

Hamiltonian(15), we find
Hf=ﬁw0; {Quk9ik+ i Tik}
A
+ﬁ§ ; {9uk9ik— 9 Tik}

~ihvg K(gukgk—alkaix) +O(7%), (25

where we have used a shorthand notation whegjp
= Ju(ky+K) and Oik = Ji(ky+K) - The second term ier is

O(#) with respect to the first term. Given our choice that

K max/(7/d)=0(77), the third term isO(#?) with respect to
the first term, because.ng/wozKmaxl(qr/d)=0(1;2). Of
course, were we to choosg,,,,/(7/d)=0(7), then the third

=0(%*? would still allow us to reduce Eq15) to the de-
sired Eq.(25) form. However, in the Appendix we show that
we requireK ., /(7/d)<O(27) for the nonlinear portion of
the Hamiltonian to be easily tractable.

We now turn to the consideration of pulse dynamics using
our Hamiltonian formulation. To do so, we build an effective
field as the Fourier superposition of thg «(t) [8],

(26)

1 )
Om(z,1)= \/E; ng(t)ele,

in terms of which we find a reduced Hamiltonian density that
generates the linear field dynamics,

A
5)(93%—9?90

+C.C.).

Using Eq.(26), the equal-time canonical commutation rela-
tions, defined in Eq(13) for the mode amplitudes, extend to
the effective fields as

HR(z ) =hoo(gig,+0/9)+1

f 9 9
_ﬂ( +99u 99, @

2 |9 57 "9y

[Om(Z,1),93(2" )]= 8nnd(2—2'), (29)
where to use the Diraé function we have assumed that we
are in theL — e limit, and that botlz andz’ are in the same
normalization length. The equations of moti® become

 99m(Z,1)
| —

ot 9

1
:%[gm(z,t),HR].

We now consider the portion of the reduced Hamiltonian
density associated with the nonlinear dynamics of the elec-
tromagnetic field. We use the smallness parameier
=A/wy to quantify the strength of the terms iy (7). We
first assume that the largest nonlinear terms in the Hamil-
tonian areO(7?) with respect to the largest linear terms. In
the Appendix, we show that Whel o,/ (7/d) =0(77), we
can write fp= O €'*+O(7). With this restriction on

term inHY would be the same order as the second term, anffmax We find that @ k)= wmi[1+0(7°)], and that
the form of the Hamiltonian would seem to be unchangedam=gmd 1+ O(7?)]. Since the strength of the nonlinearity
However, strictly speaking, thi€ in the third term should be is alreadyO(#?), we find that

+0(7°),

h2eo (L2 XP2)|
M= o) e R TS

16tz e%(z) |

iKizp’ iKizp’
uk € Ou, 9k, €Ol
Ki

+c.c. (30)

\ @uk, \ @ik,
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where theK;=k;—ky are wave-number detunings. We ig- mutations of these. This assumption can easily be relaxed,
nore terms in Eq(30) that have either zero or four complex but adopting it we find that the reduced Hamiltonian density
conjugates, since they represent third-harmonic generatiomssociated W|tFHN|_ is

We also ignore terms in E¢30) with one or three complex

conjugates, because the dynamics that they describe will h 4 o 1o

have only a negligible effect on the pulse dynamics. That is, ¢NU(ZD =~ Z{@uuud9ul*+4aunlgul*lail*}

terms with one or three complex conjugates will, roughly
speaking, couple fields oscillating @t'“°' to fields oscillat-
ing ate*'o'. Because of the rapid oscillation, the effect of
this coupling is small, and is usually ignored by application

f
- E{aululgﬁgfr2+ a|u|ug|2932+ ay gl

of the rotating wave approximatiofRWA) [15]. If those (37)
terms are kept here, it is straightforward to show that they,ore \we have defined
can be eliminated by a multiple scales analysis7et1 that
rigorously effects the RWA; we do not explicitly do this. Sheg (4 @ (0 0 K 0 )

We still have to account for terms in E(S0) with two o :_OJ' ' (38)
complex conjugates, which we do in the following manner. pars 4,u§d \/‘"Pko“’qko rko®sky
From Bloch’s theorem we can write

%ko(z): vpko(z)eikoz, (31 IV. TRAVELING-WAVE BASIS

) o ) In the preceding section, we constructed a reduced Hamil-
where p=u or |, and wherev, (2) is periodic with the  yhian density in terms of effective fieldg,,(z,t), that
lattice. Thez-dependent portion of the integrand of a generalwere built as Fourier superpositions of Bloch functions at the
term in (30) with two complex conjugates will be band edges of a photonic band gap. It is well known that at
the band edges the underlying Bloch functions are standing

L JL’Z ﬁv o ot waves, and the,,(z,t) are thus effective fields associated
Pars™ | | g4 PRoTakoTrkoTsky with them. In this section, we convert the Hamiltonian for-
, mulation from the fieldsg,,(zt), to the fieldsG.(z,t),
x e!K1KatKg=Ka)gz, (32)  which are associated with traveling waves, and which satisfy

the familiar coupled mode equations.
We can expand the portion in the parentheses on the left- \ye start by defining7]

hand side of Eq(32) as a Fourier series because all quanti-
ties are periodic with the lattice. We then find (9(z,t)Figy(zt))

Gi(zat): \/E

Using these new effective fields in E7), we find the
reduced Hamiltonian densities

(39

L2
Ipqrs:; ngrsfilee'(K1*K2+K3*K4+n(2w/d))dz, (33

where the Fourier expansion coefficient is
0y HR(z)=hoo|G.[*+]G_|?)
n _ - g1 g=in(2mld)z
Apars dfo o ok DatyOrcy O dz. (34 7iA . L fiug
- 7(G+G,+G,G+)—I —_—
The integral on the right-hand side of E@3) will vanish

unless aG+

GT
0z T oz

Since we have stipulated thit /(7/d)=0(%?), this con- and from £q.(37) we find
dition (35) can only be satisfied whem=0, so that 5
HRU(Z )=~ Saol|G.[*+]G_|*+4|G.[)G_ [}

L/2 i
| pars= 0L f e 1K1 KatKa Kdz  (36)
pars— Hpars | |, —ﬁal(GJrGi+G7G1)|G+|2_hal(G+Gt

In fact, only certain values aﬂgqrs will be nonzero. This is
because we are working at the band edge, so that the Bloch
functions and their derivatives can be written as real func-

h
+G_GH|G_|2- §a2{62+012+(32_012},

tions with definite parity, with9,,, of opposite parity t@;, . (4D
If we then assume that the quantipf®)(z)/e%(z) is even, where

then the integrand of Ed34) will be odd about the point

=d/2, and will hence vanish, fag?,,, af,, . and any per- ao=Hayuuut 2auu+ o b, (42)
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alzzl_t{_auuuu"— allll}: V. DISCUSSION

We now consider the coupled mode equations in the ab-

—1 _ o
2= a{ duuui Bauunt @ sence of nonlinearity,

where a5 is given by Eq.(38). This gives us a reduced

toni i dG dG ®
Hamiltonian, 0= — —— +j— — —OG+ +xkG_, (48)
L vg ot 0z Vg
HR:f HR(zt)+HR (z,t)}dz, (43
@O FH () | 0G. dG. wg
_—T—IW——G,+KG+,
with commutation relations Yo g
[G.(z1),GL(Z' \1]=8(z-2"), (44)  Where
where all other commutation relations are zero, and the A
Heisenberg equations of motion, K=o (49)
9
13 96 =[G. ,H] (45 Itis well known[1,8] that these coupled mode equati@¢A8)
ot D

give a definite prediction for the dispersion relation of the

) _ periodic system in the vicinity of the photonic band gap:
The coupled mode equations given by E@S) and(45) are

IG.. 9G., A w(K)ZwOivg\/K2+K2, (50
= — 4+ - - —C_
0=i o Ve wOGi+2G+
) , » _dw(K) K
+aol|6.17+2]64/)G. © =T T e e
+0a1(|G.[2+|G+ )G +a1(G.GL+G.GL)G.
2 2
+a,G2GL . (46) ry= 2 K
w K2 —UQ(K2+K2)3/2’

In these equations, the parametgrhas the familiar inter-
pretation of the group velocity in the absence of a gratingwr1ere the ¢) sign refers to frequencies above the gap, and
The form of these equations is the same as those present:

. _ Btk (=) sign to those below the gap.
earlier by de Sterkest al. [7,16]. However, there the field Although the form of the CME presented here is equiva-

.qent to the heuristic CME derived elsewhédid, the param-

the Bloch functions of the underlying medium, and a canom—eterSwO’ x, andv, are taken from the true band structure of

cal formalism based on those field amplitudes cannot easi%e system. For strong index contrasts, the usual heuristic

bhe construct_ed. IE a preworl]Js p?fdéﬂ_, Wef_h%ve dls%us_sed expressiong 1] for those quantities are inadequate. In the
the connection between the efiective fields used In oUteainger of this paper, we investigate how effectively the
Hamiltonian approach and the envelope functions used by d&rong-grating CME reproduce the properties of the linear
St?/r\;fehethal. duced Hamiltoniaf1) in hand dispersion relation: phase velocity, group velocity, and group
: Ith the rﬁ uce am& toma@ .) In fa?] » We can r_}%w velocity dispersion. We consider systems in which the band-
|n\{est|gate the conserve quantities 0 L € system. er jap width is such a large fraction of the Bragg frequency that
quired procedure is similar to that outlined in an earlier pape he validity of A/w, as a smallness parameter is called into

9], SO we simply present th_e results. In addition to .thequestion. Nevertheless, we show that even whghw,
Hamiltonian, we find the following two conserved quantities: ~0.25, the CME give an excellent approximation to the lin-
iho. (L2 G G ear properties of the structure. Furthermore, the CME remain
pP= gf ( T s +GT——c.c.)dz, (47  remarkably valid over a larger range kfvalues.
2c 0z 9z In our simulations, we consider the index profile shown in
Fig. 2, where in a unit cell of widtll, a given portions, has

L/2 . . .
dexn,, and the remainder has inde
= f G, (z 0> +|G_(z 1)} dz ndexmn, K
Q=hao | {IG.(z0*+]G- (2]}

—L/2

n, —dR2<z<-s/2
The quantityP is the conserved momentum associated with
X . ) X = —s/2<z<
translational invariance and the quantfyis the conserved n(z) . slo<z=sl2
charge associated with phase translation invariance. We note n, +s/2<z<d/2.
that the underlying periodic system does not possess space
translation invariance, but at the level of the effective fieldsFor a given frequency, the corresponding wave numbky,

such an invariance is, indeed, obtained. can be determined by the transcendental equéfi@h

026606-6



HAMILTONIAN FORMULATION OF THE NONLINEAR . .. PHYSICAL REVIEW E 66, 026606 (2002

n(z) 2 e 2
n,
§O
&
oy
o 14 - L1
(0]
3
(o
o
[T
z=-d/2 =0 z=d/2
z=-5/2 z=sf2
FIG. 2. Index profile throughout a unit cell of the periodic me- (@) (b) 0
. . . . . . . T T T T T T
dium used in the simulations. An analytical solution exists for both .1 0 1 -1 1
the Bloch functions and the dispersion relation for a periodic me- Wave number [k/(n/d)]

dium with this unit cell. ] ] ) o )
FIG. 3. Exact dispersion relatiofsolid line) and CME predic-

5 tion (dashed ling for a periodic system witl=0.005. In(a) the
P +q gap width is 25% of the Bragg frequency; (b) the gap width is
qp 50% of the Bragg frequency. In both cases the CME give an excel-

cogkd)=cog p(d—s)]cogqs)— %

) ) lent approximation to the exact dispersion relation for frequencies
xXsin p(d—s)]sin(gs), (51) below the Bragg frequency. For frequencies above the Bragg fre-
guency the agreement is excellent for wave numbers very close to
where we have definegi=n,»/c andg=n;w/c. The Bloch the Bragg wave numbgko. Away frqm the Bragg wave number the
functions. which are needed to evaluazt@ can be deter- €xact dispersion relation curves in order to account for the next
mined b),/ a simple transfer-matrix techl,'liq@iﬁ] For a Nigher photonic band gap. The CME do not account for this extra
given fill fractionF=s/d, we consider values af; andny, in curvature.

Lhe followtl)n(i;_rrllanitezr: V\r/]e ﬂ).( the onver ?.nd tUpfr?r ?and 'tn'cause an index profile witk=0.005 contains an immense
olr(c:ieesr kt)(;n de ; ,gs_soé:i;t:é ﬁita’\’;};n;’e;;?ﬁ E\jNe ?he%wesr- number of higher—prder Fourier components, SO higher-order
| " gap o roet B yf ' o] (;‘1 Y bands interfere with the efficacy of the CME in the upper

andnp unti \fve ac |'eveaT arget bragg frequenaly,, anda - pang |f we simulate_ structures with the same valuaogf

target band-gap widthA". For different ﬂg frzctlgnS, thltleb and AT, but with a fill fraction closer toF =0.5, then the

Bloch functions at the lower an r band edge will be . e ' -

dif?grenLtj ;n(()j f]e?qce ?hé’ VZ|U2 g u\f)v?lle e differer?t We  CME give a much better approximation to the exact disper-
' b ' sion relation. In much of what follows we uge=0.005, in

consider the two lowest-order bands because the main reasgfijor 1o demonstrate that the CME give a very robust de-
why the dispersion relation predicted by the CME deV""‘tesscription of the linear dynamics of the electromagentic field,

from the exact dispersion relation is that the CME do NOt) i+ at the end of this section we verify that usifig=0.5

include the effects of higher-order bands. As will be seen, th?nakes the predicted dispersion relation of the CME much
CME give an excellent approximation to the lower bahd, more accurate.

=1, because the expressidtb) for the group velocity dis- In Fig. 3, we plot the exact dispersion relatiolid line)

persion is less affected by other photonic band gaps in the, 4 yhe' cME predictioridashed lingfor structures withF
system. For the upper band, the curvature in the band that is j 595 and WithAT=0.250, [Fig. @] and AT=0.5u,

induced by the higher-order photonic band gaps is mor Fi b1 Th | fw is normalized to and the
mar_ked, and so th_e dispersion relation pre(_jicted _by the QMEE;I?Jés(gfI)(]is n(;ern\"nlgliuz?adotg)n/d. For frequencicgg’ below,,
deviates more noticeably from the exact dispersion relatlonthe dispersion relation predicted by the CME is virtually in-

For the rema|Tnder of the paper, we fix the target Braggdistinguishable from the exact dispersion relation. For fre-
frequency to bewy=2c/d, W'hereTc IS th_isgeed_Of light. For quencies abovey, the exact value diverges from the CME
a small target band-gap width, <10 "o, this value of pregiction, because the existence of the next higher-order
wy would correspond to a medium with an average indexyhotonic band-gafcentered aboub=2w,) is not built into
equal towr/2. In our simulations, we let the target band-gapthe coupled mode equations. The true dispersion relation has
width be 10%, 25%, and 50% afj. For a fill fractionF  to curve downwards, because it must account for this next
=0.005, andAT=0.50), we find thatn;=1.26 andn,  higher photonic band gap. Nevertheless, the CME give a
=15.7. This value ohy would likely not be physically re- very good fit to the dispersion relation far<1.50w, when
alizable, but we stress that these simulations are intended t"=0.25w,, and forw=<1.350, whenA "= 0.5w,.
investigate the validity of the CME, not the feasibility of  In addition to giving an excellent approximation to the
designing photonic band-gap structures. In fact, such a filtlispersion relation, the CME accurately predict the value of
fraction represents something of a worst-case scenario, béke complex wave number inside the photonic band gap. In-
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~ FIG. 4. Imaginary part of the wave number for frequencies in- £ 5. Group velocity and group velocity dispersion as a func-
side the photonic band gap for a structure Wit 0.005, and agap  {jon of wave number for the exact dispersion relatisnlid line)

width that_ is 50% of the Bragg freq_uency. The CME ap_prqximationand the CMECcrosses The structure hak =0.005 and a gap width
(dashed lingagrees very closely with the exact valgplid lin). that is 25% of the Bragg frequency. For wave number detunings

) ) that are relatively smallK/(7/d)<0.2), the CME give an excel-
side the gap we expect the wave number tokbeky+i¢. lent approximation.

Inverting the expression fan(K) (50) we find that for fre-
quencies that are inside the photonic band gap the CMEourier component of the periodic index variation that is

predict responsible for the next higher photonic band gap is not too
1 strong, so that the extra curvature needed for the band to
; :+_\/Trz open does not interefere as much with frequencies in the
1¢(w) vy (0= wg)"—vgr”. (52) vicinity of the first photonic band gap.
In Fig. 4, we compare the CME prediction 6fw) (dashed VI. CONCLUSION

line) to that given by the analytical expression fér
=0.005 andAT=0.50w,. Again the agreement is excellent; = We have presented a canonical Hamiltonian formulation
the peak value of (w) predicted by the CME differs by only 0f Maxwell's equations in the presence of a nonlinear, peri-
2.5% relative to the exact value. The asymmetry betwee@dic Kerr medium. The Hamiltonian is written in terms of
frequencies above and below the Bragg frequency that Wa{gode amp_litudes that modulate the Bloch functions of th_e
seen in Fig. 3 is again evident in Fig. 4, but the effect islinear medium. We have shown that if the electromagnetic
much more slight. field is composed of frequencies within or near a photonic
In Fig. 5, we compare the values af (K) and " (K) band gap of the system, then a reduced Hamiltonian, written
predicted by the Coup|ed mode equatic(nmsse)sto those in terms of effective ﬁelds, can be used to describe I|ght
given by the exact dispersion relati¢solid line) of the rect- ~ Propagation in the system. The Hamiltonian is equal to the
angular index profile, as a function of frequency. We use€nergy in the field, and can easily be quantized. The equa-
AT=0.250] andF=0.005. Because we expect our coupledtions of motion that are generated by the reduced Hamil-
mode equations to be valid only whew(/d) is small, we ~ tonian are the nonlinear CME.

plot the values ofw’(K) and w"(K) for —0.2<K/(#/d) We have investigated the effectiveness with which the
<0.2. The CME give an excellent approximation to the ex-CME approximate the dispersion relation of the underlying
act values. periodic medium in the absence of nonlinearity. It was shown

We have mentioned that a fill fractidh=0.005 is some- that even for large index contrasts, which lead to the opening
thing of a worst-case scenario. In order to verify this, we®f Photonic band gaps with widths up to 25% of the Bragg

define a group velocity dispersion deviation coefficient ~ requency, the CME give an excellent approximation to the
dispersion relation both within the photonic band gap and for

"K) Jogaci— @ (K) ’ a large range of frequencies outside the band gap. Since the

exact CME! < 100%. (53)  CME are applicable to one-dimensional systems with a large

" (K) Jexact ’ index contrast, they might remain a useful heuristic tool for
the investigation of pulse propagation in two- and three-
We then fixAT=0.250], and determine the value &, dimensional photonic crystals. The method used in this paper
for —0.2<K/(r/d)<0.2 for various fill fractiond=. We find  to derive the nonlinear CME can easily be extended to
that althoughRyax is about 15% forF=0.005, it drops to higher-dimensional systems, and will thus be useful in such
as little as 1% forF=0.5. This is because fdf=0.5 the an investigation.

®
R(K)=
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Research Ontario. och functions is ultimately unimportant. Our second pur-

pose involves rewriting . + k)= mi,€*, o that the nor-

malizationis important. However, we will show that our ap-

proximation to the Bloch functions at wave numiigr-K is
The purpose of this appendix is twofold: first, we derive correctly normalized to the desired order in perturbation

the expression§l9) and (21) for the group velocity disper- theory.

sion given in the text; second, we justify the statements made Multiplying the third equation in Eqs(Al) by uy,, and

before Eq(30) concerning the behavior of quantities such asintegrating oved we find an expression for the group veloc-

wmk and 6, near a band gap. We start by using E@.and ity dispersion(GVD),

(3) in Maxwell’s equations in order to generate a set of equa-

APPENDIX: k-p FOR THE DUAL FIELD

tions typical of those used ik- p analyseg14], (92wmk_ 1 Z (@qt wmk)zv ) )
A - 2 2 amVmq
0= (Vi— owhi) Umk. (A1) ok? @mk azm | (0g— Omi
\ a( 2 ) + 1 1 [domg z
IV Ok ~ Ui Umk Unk) = —— ,
=Tk Mo Umk+[Vk—ﬂow§nk]—ak , H0# @mk Wil oK

(A4)

where we have defined a group velocity matrix element

P (k)

. N
c?Vk a(w%k) IUmk <Umk —- unk>
2 gk Mook ak v (k)=i &—k (A5)
m Hol  (@mit one
N ~ P (72Umk . .
[Vk—Mowmk]W, At the band edge, the quantity,,./ Jk vanishes so that, for

the upper band,
where the second and third equations in Hédl) are thek

derivatives of the first equation, and where we have defined 072wuk0 1 ) o
the differential operator a2 ——wuko A Vbl
- 1[4 2 g, )
=——|—++i — | —+i Wqk. T o
Vi= = —| o5 +ik 2 - +ik (A2) - (0gi,+ k) -
g#u,l quruq

(wgko—wﬁko)
with e,=de/dz. Multiplying the second equation in Egs.

(A1) t_)y u’;k, and integrating oved, the length of one unit . 1 A6
cell gives Uukg| e | Yuko ) [ - (A6)
NV
My Upk oKk Umk Because we are assuming the& wg, and that other bands
<upk a—lr:>dz= IS (A3) in the system are distant from the band of interest, the first
o @p— @) term in the brackets will be much larger than the second. It

will also be much larger than the third, as can be seen by

where we have defined a notation for the overlap integrals,no,[ing the following. The quantity (z)=1, so

<A|©|B>=f0dA*(©B)dz, < .
ol woe

uuk0> <C2<uuk0|uuk0> =c?.

whereO is a differential operator. In writing down EGA3) The quantityu v, is on the order ot2, so the ratio of the
u u ’

we have assumed that,, is orthogonal todu,,./dk, as is . : . . .
usual ink-p analyses. The only consequence of this is thatthlrd term to the first term is approximately/ wo. We define
a smallness parameter= A/ wq so that

theu,,, will in general not be normalized in the same way as
theun,,, and thus the, will not be normalized in the same )
J w”ko_ Uiulul

way as theamko. We adopt this conventioonly in this ap- >
pendix, and not in the text. Our first purpose in this appendix ak? A

[1+O(n)], (A7)

026606-9



SURESH PEREIRA AND J. E. SIPE PHYSICAL REVIEW &b, 026606 (2002

where we have used the fact thaf/w,, =1. In the text we  the same order, in which case terms wak-u,l will be

have defined 4= —iv (ko). O(#n) with respect to terms witlq=u,l. Because of this we
We now turn to the second issue of this appendix. We stargan write, to lowest order im,

by expanding an arbitrany,,(z) as a linear combination of

the u's at wave numbekg, U|k”—‘7|k°U|k0+ Vf'kkouuko, (A11)
U= 7houy + 70U
Uni(2) = 2 Vm Uni,(2), (A8) uk™ Yuk Uik ™ Yuk Yukg
K with
where theymlf are not functions oz. We evaluatey, ° by
taking a Taylor series, . K
I WO=1, Al=—ivgy (A12)
(9U|k
U= U|ko+ K (9k +-, (Ag)
=0 uko_ 1 uko_ _; 5
Yuk =+ Yk Ugpr-
uk
Uuk= Uy, 7K ok J )+ o This means that a Bloch function in the upper band, say, can
K=0 be written as
where we have defined=k—k,. We now place a restric-
tion on the maximum allowable value &f in our theory, P k:E ),bkoeb eiKz:( 0. —iv Eelk )eiKz.
K max/ (71d)=0(77), which allows us to ignore th&? and ! uk “bko o TTOA
higher-order terms in the expansi¢h9). An expression for (A13)

AU/ K|k =o can be found by writing ] )
Now, sincev is of orderw,/(#/d), and because we have

aumk assumed thakK ., /(7/d)=0(7?), we find that v gK max/A
Ik Jk=0= 2 8qUqk, =0(7), SO we can write
N, Ou= Ouk,"*+O(7), (A14)
1 Yako| gk |mi »
= quo, 0|k: 0”(08I Z+O( 7]).

(A10) These expressions fak,, and 6, are used to determine the
portion of the Hamiltonian that generates the nonlinear dy-
where we have used E¢A3). We assume that the value of namics. Although¥,, and 6, are not, strictly speaking, nor-
the overlap integral:{,uqko|L;\‘/k/ak|umk0>, will be of roughly  malized according to Eq4), they are normalized t®( 7).
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