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Hamiltonian formulation of the nonlinear coupled mode equations

Suresh Pereira and J. E. Sipe
Department of Physics, University of Toronto, Toronto, M5S 1A7, Canada

~Received 11 April 2002; published 28 August 2002!

We derive a canonical Hamiltonian formulation of the nonlinear coupled mode equations~CME! that govern
the dynamics of pulse propagation in a one-dimensional, periodic Kerr medium when the frequency content of
the pulse is in the vicinity of a photonic band gap, and sufficiently narrow relative to a carrier frequency. The
Hamiltonian is equal to the energy in the electromagnetic field. We show that even for large photonic band gaps
~25% of the Bragg frequency!, the CME give an excellent approximation to the dispersion relation of the
linear, periodic medium. This suggests that two- and three-dimensional photonic band-gap materials, which
necessarily have large index contrasts, might be effectively described by a set of generalized CME.
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I. INTRODUCTION

Investigators of optical pulse propagation in on
dimensional, isotropic, Kerr nonlinear media, with a period
variation in the linear index of refraction, often use a set
heuristic nonlinear coupled mode equations~CME! @1–4#. In
the derivation of these equations it is typically assumed
the index contrast of the periodic variation is very small re
tive to the average effective index of refraction. With t
introduction of photonic band-gap~PBG! materials which, at
least in two or three dimensions, require the use of str
index contrasts@5,6#, the nonlinear CME have recently bee
derived using the underlying Bloch functions of the period
medium as an expansion basis, which allows for the tre
ment of gratings with higher index contrasts@7,8#.

In this paper, we present a canonical Hamiltonian form
lation of the nonlinear CME in one dimension. Bycanonical
we mean that our Hamiltonian can be used to derive
exact equations of motion using canonical commutation
lations,and that it is numerically equal to the energy of th
~nonlinear! electromagnetic field. The CME that we prese
are equivalent to those derived earlier for strong grati
@7,8#, but our approach has two distinct advantages. First,
Hamiltonian formulation allows for ease in quantizing t
theory; this we do not do here, but defer to a later publi
tion. Second, the Hamiltonian formulation aids in the iden
fication of symmetries and their relation to conserved qu
tities at the effective field level. In particular, we use t
reduced Hamiltonian to identify two more conserved qua
ties: the momentum, associated with space-translation s
metry, and a conserved charge associated with ph
translation symmetry@9#.

It is hoped that the convenience and physical insight o
coupled-mode approach will carry over to highe
dimensional PBG materials, but there are two reasons wh
might not: first, the dispersion relation of a two- or thre
dimensional PBG material is often quite complicated, so t
there may be no regions where the nonlinear CME would
applicable; second, even were the dispersion relation s
ciently well-behaved that use of the CME could be cons
ered, the large index contrasts involved might cast the va
ity of the linear predictions of the CME into doubt. A ful
analysis of the three-dimensional problem has yet to be d
1063-651X/2002/66~2!/026606~10!/$20.00 66 0266
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In this paper, we investigate the predictions of the line
CME in the presence of a strong index contrast for a o
dimensional system. The linear CME make a very clear p
diction for the dispersion relation of the periodic mediu
@1,8#. We compare this prediction with the exact dispersi
relation for a periodic media with very large photonic ba
gaps. Even when the width of the photonic band gap is 2
of the Bragg frequency, we find that the coupled mode eq
tions predict the group velocity and group velocity dispe
sion of the system to within about 10% in the region whe
they would be expected to hold. This agreement between
CME and the exact solutions suggests that the CME w
remain useful as a heuristic guide to nonlinear pul
propagation experiments even in the presence of very str
index contrasts.

An outline of the rest of the paper is as follows. In Sec.
we rewrite Maxwell’s equations for a one-dimensional, pe
odic, Kerr nonlinear medium in a canonical Hamiltonian fo
mulation, using a dual field introduced earlier by othe
@9–12#. In Sec. III, we define effective fields, in terms o
which we write a reduced Hamiltonian that generates
nonlinear CME. In Sec. IV, we rewrite the reduced Ham
tonian in terms of fields that have a familiar interpretation
traveling waves. In Sec. V, we compare the approximate
persion relation predicted by the CME to the exact dispers
relation of the periodic system. In Sec. VI we conclude.

II. CANONICAL FORMULATION OF MAXWELL’S
EQUATIONS

We begin by introducing a dual field,L(z,t) @9–11#, that
satisfies

]zL5D, ] tL52H, ~1!

where D and H are the electric flux density and magnet
field strength familiar from Maxwell’s equations. We assum
that the medium of interest is nonmagnetic (m5m0, the per-
meability of free space! and periodic with periodd. In the
absence of nonlinearity, we can determine the Bloch fu
tions of the system using the usual ansatz@13#,

L~z,t !}um~z!e2 ivmt1c.c., ~2!
©2002 The American Physical Society06-1
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where c.c. stands for ‘‘complex conjugate.’’ From Bloch
theorem@13#, we can write our Bloch functions in terms of
discrete band indexm, and a reduced wave number,k, with
2p/d,k<p/d, so for theum we have

umk~z!5umk~z!eikz, ~3!

where theumk have the periodicity of the lattice,umk(z)
5umk(z1d). We note thatvmk5vm(2k) , so we can choose
our Bloch functions such thatumk(z)5um(2k)* . We normal-
ize the Bloch functions via

E
2L/2

L/2

umk* ~z!um8k8~z!dz5Ndmm8dkk8 , ~4!

whereL is a normalization length, and where we have ch
sen the normalization constantN5L/d, which is then iden-
tified as the number of unit cells in the normalization leng
This choice of normalization means that our wave numb
take on only discrete values, and that the difference betw
two adjacent wave numbers is 2p/L. A typical dispersion
relation in this reduced-wave-number scheme is sketche
Fig. 1. Shown in the figure are the quantitiesv0 , vu0 , v l0,
andD, as well as a photonic band gap of the system, al
which will be discussed later in the text.

In the presence of nonlinearity, we use the Bloch fun
tions of the underlying periodic medium as an expans
basis for the dual field,

L~z,t !5(
m

(
k52p/d

p/d A \

2Nm0vmk
@amk~ t !umk~z!1c.c.#,

~5!

FIG. 1. Sketch of a dispersion relation for a one-dimension
periodic medium. Identified on the graph are the Bragg freque
and Bragg wave number of the system. We label the quantitiesv0 ,
vuk0

, v lk0
, andD used in the text. We show the lowest-order ph

tonic band gap, so thatl 51, u52, andk05p/d.
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where the amplitudes,amk(t), are the classical analogue o
raising and lowering operators. We now specialize to a K
nonlinear medium, and assume that the nonlinearity is we
«0x (3)E3!«E, wherex (3) and«, the nonlinear susceptibil
ity and linear permittivity of the medium, are assumed to
periodic: x (3)(z)5x (3)(z1d) and «(z)5«(z1d). Under
these approximations, Maxwell’s equations can be written
@9#

H5HL1HNL ~6!

with

HL5(
mk

\vmkuamku2, ~7!

HNL52
\2«0

16N2m0
2E

2L/2

L/2

dz
x (3)~z!

«4~z!

3F)
i 51

4

(
miki

~amiki
umiki

8 1c.c.!

Avmiki

G ,

whereHL is the portion of the full Hamiltonian that gene
ates the linear dynamics of the electromagnetic field andHNL
is the portion that generates the nonlinear dynamics. HerH
is numerically equal to the energy of the electromagne
field in the presence of the material medium. The mode a
plitudes satisfy commutation relations

@amk~ t !,am8k8
†

~ t !#5dmm8dkk8 , ~8!

@amk~ t !,am8k8~ t !#50,

and canonical equations of motion@9#,

i
damk

dt
5

1

\
@amk ,H#, ~9!

which give

damk

dt
52 ivmkamk1 i

\«0

4N2m0
2E

2L/2

L/2

dz
umk8* x (3)

Avmk«
4

3F)
i 51

3

(
miki

~amiki
umiki

8 1c.c.!

Avmiki

G , ~10!

where we have suppressed thez dependence ofumk8 (z),
x (3)(z), and«(z), and the time dependence ofamk(t).

III. THE COUPLED MODE EQUATIONS

In this section, we subject our Hamiltonian~6! to a series
of approximations that are relevant to pulses that we wish
describe by the nonlinear coupled mode equations@7#. We
assume that the frequency content of the pulse is enti
contained in the two bandsm5u,l , wherem5u refers to the
band just above the given photonic band gap, andm5 l re-
fers to the band just below the gap. Because of this assu

l,
y
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HAMILTONIAN FORMULATION OF THE NONLINEA R . . . PHYSICAL REVIEW E 66, 026606 ~2002!
tion, we can consider a Hamiltonian that includes contrib
tions only from them5 l ,u bands without introducing any
appreciable error into our expression for the total energy
the electromagnetic field. We also assume that the frequ
cies and wave numbers in the pulse of interest are close
photonic band gap of the system, where the meaning
‘‘close’’ will be made more precise in the following. To cha
acterize the band gap, we define the gap width,D, and the
Bragg frequency,v0, which is the frequency at the center
the gap,

D[~vuk0
2v lk0

!, ~11!

v0[
1

2
~vuk0

1v lk0
!,

wherevuk0
is the frequency at the upper edge of the ba

gap,v lk0
is the frequency at the lower edge of the band g

and k0 can take on the value 0 orp/d depending on the
photonic band gap of interest. The quantitiesv0 , vuk0

, v lk0
,

andD are indicated in Fig. 1. The photonic band gap in t
figure is the lowest-order gap, so thatl 51, u52, andk0
5p/d.

We now make the transition from the mode amplitud
alk and auk to new mode amplitudes,glk and guk , that are
more amenable to a coupled mode equation formulat
These new mode amplitudes are defined via the Bogoliu
transformation

auk5gkguk1 ibkglk , ~12!

alk5gkglk1 ibkguk ,

wheregk andbk are assumed to be real. We show below t
our theory is valid whenubku!ugku so that from Eqs.~12! it
is clear thatgl (u)k is composed mostly ofal (u)k with only a
small component ofau( l )k . This field definition is consisten
with previous analyses of the CME@7,8# where it has been
shown that the fields in the CME are mixtures of fields th
are contained in the upper and lower bands of the disper
relation. We impose canonical commutation relations on
guk andglk ,

@glk ,glk8
†

#5@guk ,guk8
†

#5dkk8 , ~13!

with all other commutators vanishing. Since theauk andalk
also satisfy such commutation relations~8!, this leads to a
restriction on the values of thegk andbk ,

gk
21bk

251. ~14!

When we writeHL ~7! in terms of theguk andglk using Eqs.
~12! we find a reduced Hamiltonian,HL

R , that generates the
linear dynamics of the electromagnetic field,
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R5(

k
$\vukgk

21\v lkbk
2%gukguk

† 1(
k

$\v lkgk
2

1\vukbk
2%glkglk

† 2 i\(
k

bkgk$vuk2v lk%

3~gukglk
† 2guk

† glk!. ~15!

In order to construct a reduced Hamiltonian that will d
rive the appropriate coupled mode equations, we assume
the frequencies in the upper and lower bands in the dis
sion relation are symmetric about the Bragg frequency,v0,
so that

vuk5v01
D

2
1 f ~K !, ~16!

v lk5v02
D

2
2 f ~K !,

where we have introduced the wave-number detuning

K[k2k0 . ~17!

The form of f (K) can be determined in the following man
ner. We write

vuk5S v01
D

2 D1S ]vuk

]k c
K50

DK

1
1

2 S ]2vuk

]k2 c
K50

D K21••• . ~18!

Because we are evaluating the derivatives at the band e
we know that the first derivative ofvuk is zero. In the Ap-
pendix, we show that

]2vuk

]k2 cK50.2
uvgu2

D
@11O~h!#, ~19!

where we have introduced the smallness parameteh
5D/v0, and where

vg5
c2

2v0
E

0

d 1

n2~z!
F S ]uuk0

*

]z
D u lk0

2uuk0
* S ]u lk0

]z
D Gdz

~20!

plays the role that a ‘‘velocity matrix element’’ would in
theory of electrons in a periodic potential@14#. To the same
order

]2v lk

]k2 c
K50

.22
uvgu2

D
@11O~h!#. ~21!

Our goal is to derive a simplified form for the Hamiltonia
~15! accurate to orderh2. To this end we now place a re
striction on the maximum allowable value ofK by asserting
6-3
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SURESH PEREIRA AND J. E. SIPE PHYSICAL REVIEW E66, 026606 ~2002!
that Kmax/(p/d)5O(h2), a choice we discuss in more deta
after Eq.~25! below. We truncate Eq.~18! after the second
derivative term; this is justified because the dispersion r
tion is even aboutk0, so that the odd derivatives vanish, a
because the largest value of the 2Nth term in the expansion
~18! will be proportional to@Kmax/(p/d)#2N5O(h4N) and can
thus be ignored at the level of perturbation that we are c
sidering here. Comparing the form off (K) @Eq. ~16!# to Eq.
~18! and ~19!, we find that to lowest order

f ~K !5
uvgu2K2

D
. ~22!

We note that the quantityvg.v0 /(p/d), so that
f (Kmax)/D5O(h2).

We next impose the condition

vukgk
21v lkbk

25vuk0
, ~23!

v lkgk
21vukbk

25v lk0

on gk and bk ; because of Eq.~14!, this is consistent with
Eqs. ~16!. Then, using Eqs.~16! in Eqs. ~23!, and recalling
the normalization condition ongk andbk ~14!, we find

gk5A D1 f ~K !

D12 f ~K !
, bk5A f ~K !

D12 f ~K !
. ~24!

Given the definition~22! of f (K), it is clear thatbk /gk
5O(h). Using these definitions ofgk and bk ~24! and the
expression forf (K) ~22! in the expression for the reduce
Hamiltonian~15!, we find

HL
R5\v0(

K
$guKguK

† 1glKglK
† %

1\
D

2 (
K

$guKguK
† 2glKglK

† %

2 i\vg(
K

K~guKglK
† 2guK

† glK !1O~h3!, ~25!

where we have used a shorthand notation whereinguK

5gu(k01K) and glK5gl (k01K) . The second term inHL
R is

O(h) with respect to the first term. Given our choice th
Kmax/(p/d)5O(h2), the third term isO(h2) with respect to
the first term, becausevgK/v0.Kmax/(p/d)5O(h2). Of
course, were we to chooseKmax/(p/d)5O(h), then the third
term inHL

R would be the same order as the second term,
the form of the Hamiltonian would seem to be unchang
However, strictly speaking, theK in the third term should be
02660
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replaced byK@11 f (K)/D#1/2. To ignore the dynamics de
scribed byf (K)/D, we require (f (K)/D)5O(h), which, in
turn, requiresKmax/(p/d)5O(h3/2). Were we to choose this
restriction onKmax, then we could still recover the sam
Hamiltonian~25!, but the terms inHL

R that we ignore would
be O(h2) rather thanO(h3). So if we are considering only
HL

R , as we do in Sec. V, then the conditionKmax/(p/d)
5O(h3/2) would still allow us to reduce Eq.~15! to the de-
sired Eq.~25! form. However, in the Appendix we show tha
we requireKmax/(p/d)<O(h2) for the nonlinear portion of
the Hamiltonian to be easily tractable.

We now turn to the consideration of pulse dynamics us
our Hamiltonian formulation. To do so, we build an effectiv
field as the Fourier superposition of thegmK(t) @8#,

gm~z,t !5A1

L(
K

gmK~ t !eiKz, ~26!

in terms of which we find a reduced Hamiltonian density th
generates the linear field dynamics,

H L
R~z,t !5\v0~gu

†gu1gl
†gl !1\S D

2 D ~gu
†gu2gl

†gl !

2
\vg

2 S gl
† ]gu

]z
2gu

]gl

]z
1c.c.D . ~27!

Using Eq.~26!, the equal-time canonical commutation rel
tions, defined in Eq.~13! for the mode amplitudes, extend t
the effective fields as

@gm~z,t !,gn
†~z8,t !#5dmnd~z2z8!, ~28!

where to use the Diracd function we have assumed that w
are in theL→` limit, and that bothz andz8 are in the same
normalization length. The equations of motion~9! become

i
]gm~z,t !

]t
5

1

\
@gm~z,t !,HR#. ~29!

We now consider the portion of the reduced Hamiltoni
density associated with the nonlinear dynamics of the e
tromagnetic field. We use the smallness parameterh
.D/v0 to quantify the strength of the terms inHNL ~7!. We
first assume that the largest nonlinear terms in the Ham
tonian areO(h2) with respect to the largest linear terms.
the Appendix, we show that whenKmax/(p/d)5O(h2), we
can write umk5umk0

eiKz1O(h). With this restriction on

Kmax we find that vm(k01K)5vmk0
@11O(h3)#, and that

amk5gmk@11O(h2)#. Since the strength of the nonlinearit
is alreadyO(h2), we find that
HNL
R 52

\2«0

16m0
2E

2L/2

L/2

dz
x (3)~z!

«4~z!
F)

i 51

4

(
Ki

S guKi
eiK izuuk0

8

Avuk0

1
glK i

eiK izu lk0
8

Av lk0

1c.c.D G1O~h3!, ~30!
6-4
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HAMILTONIAN FORMULATION OF THE NONLINEA R . . . PHYSICAL REVIEW E 66, 026606 ~2002!
where theKi5ki2k0 are wave-number detunings. We ig
nore terms in Eq.~30! that have either zero or four comple
conjugates, since they represent third-harmonic genera
We also ignore terms in Eq.~30! with one or three complex
conjugates, because the dynamics that they describe
have only a negligible effect on the pulse dynamics. That
terms with one or three complex conjugates will, rough
speaking, couple fields oscillating ate2 iv0t to fields oscillat-
ing at e1 iv0t. Because of the rapid oscillation, the effect
this coupling is small, and is usually ignored by applicati
of the rotating wave approximation~RWA! @15#. If those
terms are kept here, it is straightforward to show that th
can be eliminated by a multiple scales analysis forh!1 that
rigorously effects the RWA; we do not explicitly do this.

We still have to account for terms in Eq.~30! with two
complex conjugates, which we do in the following mann
From Bloch’s theorem we can write

upk0
8 ~z!5ypk0

~z!eik0z, ~31!

where p5u or l, and whereypk0
(z) is periodic with the

lattice. Thez-dependent portion of the integrand of a gene
term in ~30! with two complex conjugates will be

I pqrs5E
2L/2

L/2 S x (3)

«4
ypk0

yqk0

† y rk0
ysk0

† D
3ei (K12K21K32K4)dz. ~32!

We can expand the portion in the parentheses on the
hand side of Eq.~32! as a Fourier series because all quan
ties are periodic with the lattice. We then find

I pqrs5(
n

qpqrs
n E

2L/2

L/2

ei (K12K21K32K41n(2p/d))dz, ~33!

where the Fourier expansion coefficient is

qpqrs
n 5

1

dE0

dx (3)

«4
upk0
8 uqk0

8† u rk0
8 usk0

8† e2 in(2p/d)zdz. ~34!

The integral on the right-hand side of Eq.~33! will vanish
unless

K12K21K32K42n~2p/d!50. ~35!

Since we have stipulated thatKi /(p/d)5O(h2), this con-
dition ~35! can only be satisfied whenn50, so that

I pqrs5qpqrs
0 E

2L/2

L/2

e2 i (K12K21K32K4)dz. ~36!

In fact, only certain values ofqpqrs
0 will be nonzero. This is

because we are working at the band edge, so that the B
functions and their derivatives can be written as real fu
tions with definite parity, withuuk0

8 of opposite parity tou lk0
8 .

If we then assume that the quantityx (3)(z)/«4(z) is even,
then the integrand of Eq.~34! will be odd about the pointz
5d/2, and will hence vanish, forquuul

0 , qlllu
0 , and any per-
02660
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mutations of these. This assumption can easily be rela
but adopting it we find that the reduced Hamiltonian dens
associated withHNL

R is

H NL
R ~z,t !52

\

2
$auuuuuguu414auulluguu2ugl u2%

2
\

2
$aululgu

2gl
†21a lulugl

2gu
†21a l l l l ugl u4%,

~37!

where we have defined

apqrs5
3\«0

4m0
2d
E

0

d

dz
x (3)

«4

~upk0
8 uqk0

8† u rk0
8 usk0

8† !

Avpk0
vqk0

v rk0
vsk0

. ~38!

IV. TRAVELING-WAVE BASIS

In the preceding section, we constructed a reduced Ha
tonian density in terms of effective fields,gu/ l(z,t), that
were built as Fourier superpositions of Bloch functions at
band edges of a photonic band gap. It is well known tha
the band edges the underlying Bloch functions are stand
waves, and thegu/ l(z,t) are thus effective fields associate
with them. In this section, we convert the Hamiltonian fo
mulation from the fieldsgu/ l(z,t), to the fieldsG6(z,t),
which are associated with traveling waves, and which sat
the familiar coupled mode equations.

We start by defining@7#

G6~z,t !5
~gl~z,t !7 igu~z,t !!

A2
. ~39!

Using these new effective fields in Eq.~27!, we find the
reduced Hamiltonian densities

H L
R~z,t !5\v0~ uG1u21uG2u2!

2
\D

2
~G1G2

† 1G2G1
† !2 i

\vg

2

3S G1
† ]G1

]z
2G2

† ]G2

]z
2c.c.D , ~40!

and from Eq.~37! we find

H NL
R ~z,t !52

\

2
a0$uG1u41uG2u414uG1u2uG2u2%

2\a1~G1G2
† 1G2G1

† !uG1u22\a1~G1G2
†

1G2G1
† !uG2u22

\

2
a2$G1

2 G2
†21G2

2 G1
†2%,

~41!

where

a0[ 1
4 $auuuu12auull1a l l l l %, ~42!
6-5
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SURESH PEREIRA AND J. E. SIPE PHYSICAL REVIEW E66, 026606 ~2002!
a1[ 1
4 $2auuuu1a l l l l %,

a2[ 1
4 $auuuu26auull1a l l l l %,

whereapqrs is given by Eq.~38!. This gives us a reduce
Hamiltonian,

HR5E
2L/2

L/2

$H L
R~z,t !1H NL

R ~z,t !%dz, ~43!

with commutation relations

@G6~z,t !,G6
† ~z8,t !#5d~z2z8!, ~44!

where all other commutation relations are zero, and
Heisenberg equations of motion,

i\
]G6

]t
5@G6 ,H#. ~45!

The coupled mode equations given by Eqs.~43! and~45! are

05 i
]G6

]t
6 ivg

]G6

]z
2v0G61

D

2
G7

1a0~ uG6u212uG7u2!G6

1a1~ uG6u21uG7u2!G71a1~G6G7
† 1G7G6

† !G6

1a2G7
2 G6

† . ~46!

In these equations, the parametervg has the familiar inter-
pretation of the group velocity in the absence of a grati
The form of these equations is the same as those prese
earlier by de Sterkeet al. @7,16#. However, there the field
amplitudes were envelope functions that directly modula
the Bloch functions of the underlying medium, and a cano
cal formalism based on those field amplitudes cannot ea
be constructed. In a previous paper@9#, we have discussed
the connection between the effective fields used in
Hamiltonian approach and the envelope functions used b
Sterkeet al.

With the reduced Hamiltonian~41! in hand, we can now
investigate the conserved quantities of the system. The
quired procedure is similar to that outlined in an earlier pa
@9#, so we simply present the results. In addition to t
Hamiltonian, we find the following two conserved quantitie

P5
i\vg

2c E
2L/2

L/2 S G1
† ]G1

]z
1G2

† ]G2

]z
2c.c.Ddz, ~47!

Q5\v0E
2L/2

L/2

$uG1~z,t !u21uG2~z,t !u2%dz.

The quantityP is the conserved momentum associated w
translational invariance and the quantityQ is the conserved
charge associated with phase translation invariance. We
that the underlying periodic system does not possess s
translation invariance, but at the level of the effective fie
such an invariance is, indeed, obtained.
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V. DISCUSSION

We now consider the coupled mode equations in the
sence of nonlinearity,

05
i

vg

]G1

]t
1 i

]G1

]z
2

v0

vg
G11kG2 , ~48!

05
i

vg

]G2

]t
2 i

]G2

]z
2

v0

vg
G21kG1 ,

where

k[
D

2vg
. ~49!

It is well known@1,8# that these coupled mode equations~48!
give a definite prediction for the dispersion relation of t
periodic system in the vicinity of the photonic band gap:

v~K !5v06vgAK21k2, ~50!

v8~K ![
]v~K !

]K
56vg

K

AK21k2
,

v9~K ![
]2v~K !

]K2
56vg

k2

~K21k2!3/2
,

where the (1) sign refers to frequencies above the gap, a
the (2) sign to those below the gap.

Although the form of the CME presented here is equiv
lent to the heuristic CME derived elsewhere@1#, the param-
etersv0 , k, andvg are taken from the true band structure
the system. For strong index contrasts, the usual heur
expressions@1# for those quantities are inadequate. In t
remainder of this paper, we investigate how effectively t
strong-grating CME reproduce the properties of the lin
dispersion relation: phase velocity, group velocity, and gro
velocity dispersion. We consider systems in which the ba
gap width is such a large fraction of the Bragg frequency t
the validity of D/v0 as a smallness parameter is called in
question. Nevertheless, we show that even whenD/v0
.0.25, the CME give an excellent approximation to the l
ear properties of the structure. Furthermore, the CME rem
remarkably valid over a larger range ofK values.

In our simulations, we consider the index profile shown
Fig. 2, where in a unit cell of widthd, a given portion,s, has
index nh , and the remainder has indexnl ,

n~z!5H nl , 2d/2,z,2s/2

nh , 2s/2,z,s/2

nl , 1s/2,z,d/2.

For a given frequencyv, the corresponding wave number,k,
can be determined by the transcendental equation@17#
6-6
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cos~kd!5cos@p~d2s!#cos~qs!2
1

2 S p21q2

qp D
3sin@p~d2s!#sin~qs!, ~51!

where we have definedp[nlv/c andq[nhv/c. The Bloch
functions, which are needed to evaluatevg , can be deter-
mined by a simple transfer-matrix technique@17#. For a
given fill fractionF[s/d, we consider values ofnl andnh in
the following manner. We fix the lower and upper band
dices to bel 51,u52; that is, we investigate the lowes
order band gap associated with the system. We then varnl

andnh until we achieve a target Bragg frequency,v0
T , and a

target band-gap width,DT. For different fill fractions, the
Bloch functions at the lower and upper band edge will
different, and hence the value ofvg will be different. We
consider the two lowest-order bands because the main re
why the dispersion relation predicted by the CME devia
from the exact dispersion relation is that the CME do n
include the effects of higher-order bands. As will be seen,
CME give an excellent approximation to the lower bandl
51, because the expression~19! for the group velocity dis-
persion is less affected by other photonic band gaps in
system. For the upper band, the curvature in the band th
induced by the higher-order photonic band gaps is m
marked, and so the dispersion relation predicted by the C
deviates more noticeably from the exact dispersion relat

For the remainder of the paper, we fix the target Bra
frequency to bev0

T52c/d, wherec is the speed of light. For
a small target band-gap width,DT<1024v0

T , this value of
v0

T would correspond to a medium with an average ind
equal top/2. In our simulations, we let the target band-g
width be 10%, 25%, and 50% ofv0

T . For a fill fractionF
50.005, andDT50.5v0

T , we find that nl51.26 and nh

515.7. This value ofnh would likely not be physically re-
alizable, but we stress that these simulations are intende
investigate the validity of the CME, not the feasibility o
designing photonic band-gap structures. In fact, such a
fraction represents something of a worst-case scenario,

FIG. 2. Index profile throughout a unit cell of the periodic m
dium used in the simulations. An analytical solution exists for b
the Bloch functions and the dispersion relation for a periodic m
dium with this unit cell.
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cause an index profile withF50.005 contains an immens
number of higher-order Fourier components, so higher-or
bands interfere with the efficacy of the CME in the upp
band. If we simulate structures with the same value ofv0

T

and DT, but with a fill fraction closer toF50.5, then the
CME give a much better approximation to the exact disp
sion relation. In much of what follows we useF50.005, in
order to demonstrate that the CME give a very robust
scription of the linear dynamics of the electromagentic fie
but at the end of this section we verify that usingF50.5
makes the predicted dispersion relation of the CME mu
more accurate.

In Fig. 3, we plot the exact dispersion relation~solid line!
and the CME prediction~dashed line! for structures withF
50.005, and withDT50.25v0 @Fig. 3~a!# and DT50.5v0
@Fig. 3~b!#. The value ofv is normalized tov0, and the
value ofk is normalized top/d. For frequencies belowv0,
the dispersion relation predicted by the CME is virtually i
distinguishable from the exact dispersion relation. For f
quencies abovev0, the exact value diverges from the CM
prediction, because the existence of the next higher-o
photonic band-gap~centered aboutv52v0) is not built into
the coupled mode equations. The true dispersion relation
to curve downwards, because it must account for this n
higher photonic band gap. Nevertheless, the CME giv
very good fit to the dispersion relation forv<1.5v0 when
DT50.25v0, and forv<1.35v0 whenDT50.5v0.

In addition to giving an excellent approximation to th
dispersion relation, the CME accurately predict the value
the complex wave number inside the photonic band gap.

-

FIG. 3. Exact dispersion relation~solid line! and CME predic-
tion ~dashed line! for a periodic system withF50.005. In~a! the
gap width is 25% of the Bragg frequency; in~b! the gap width is
50% of the Bragg frequency. In both cases the CME give an ex
lent approximation to the exact dispersion relation for frequenc
below the Bragg frequency. For frequencies above the Bragg
quency the agreement is excellent for wave numbers very clos
the Bragg wave number,k0. Away from the Bragg wave number th
exact dispersion relation curves in order to account for the n
higher photonic band gap. The CME do not account for this ex
curvature.
6-7
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side the gap we expect the wave number to bek5k01 i z.
Inverting the expression forv(K) ~50! we find that for fre-
quencies that are inside the photonic band gap the C
predict

i z~v!56
1

vg
A~v2v0!22vg

2k2. ~52!

In Fig. 4, we compare the CME prediction ofz(v) ~dashed
line! to that given by the analytical expression forF
50.005 andDT50.5v0. Again the agreement is excellen
the peak value ofz(v) predicted by the CME differs by only
2.5% relative to the exact value. The asymmetry betw
frequencies above and below the Bragg frequency that
seen in Fig. 3 is again evident in Fig. 4, but the effect
much more slight.

In Fig. 5, we compare the values ofv8(K) and v9(K)
predicted by the coupled mode equations~crosses! to those
given by the exact dispersion relation~solid line! of the rect-
angular index profile, as a function of frequency. We u
DT50.25v0

T andF50.005. Because we expect our coupl
mode equations to be valid only whenK/(p/d) is small, we
plot the values ofv8(K) and v9(K) for 20.2,K/(p/d)
,0.2. The CME give an excellent approximation to the e
act values.

We have mentioned that a fill fractionF50.005 is some-
thing of a worst-case scenario. In order to verify this,
define a group velocity dispersion deviation coefficient

R~K ![Uv9~K !cexact2v9~K !cCME

v9~K !cexact
U3100%. ~53!

We then fixDT50.25v0
T , and determine the value ofRmax

for 20.2,K/(p/d),0.2 for various fill fractionsF. We find
that althoughRMAX is about 15% forF50.005, it drops to
as little as 1% forF50.5. This is because forF50.5 the

FIG. 4. Imaginary part of the wave number for frequencies
side the photonic band gap for a structure withF50.005, and a gap
width that is 50% of the Bragg frequency. The CME approximat
~dashed line! agrees very closely with the exact value~solid line!.
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Fourier component of the periodic index variation that
responsible for the next higher photonic band gap is not
strong, so that the extra curvature needed for the ban
open does not interefere as much with frequencies in
vicinity of the first photonic band gap.

VI. CONCLUSION

We have presented a canonical Hamiltonian formulat
of Maxwell’s equations in the presence of a nonlinear, pe
odic Kerr medium. The Hamiltonian is written in terms o
mode amplitudes that modulate the Bloch functions of
linear medium. We have shown that if the electromagne
field is composed of frequencies within or near a photo
band gap of the system, then a reduced Hamiltonian, wri
in terms of effective fields, can be used to describe lig
propagation in the system. The Hamiltonian is equal to
energy in the field, and can easily be quantized. The eq
tions of motion that are generated by the reduced Ham
tonian are the nonlinear CME.

We have investigated the effectiveness with which
CME approximate the dispersion relation of the underlyi
periodic medium in the absence of nonlinearity. It was sho
that even for large index contrasts, which lead to the open
of photonic band gaps with widths up to 25% of the Bra
frequency, the CME give an excellent approximation to t
dispersion relation both within the photonic band gap and
a large range of frequencies outside the band gap. Since
CME are applicable to one-dimensional systems with a la
index contrast, they might remain a useful heuristic tool
the investigation of pulse propagation in two- and thre
dimensional photonic crystals. The method used in this pa
to derive the nonlinear CME can easily be extended
higher-dimensional systems, and will thus be useful in su
an investigation.

- FIG. 5. Group velocity and group velocity dispersion as a fun
tion of wave number for the exact dispersion relation~solid line!
and the CME~crosses!. The structure hasF50.005 and a gap width
that is 25% of the Bragg frequency. For wave number detuni
that are relatively small (K/(p/d),0.2), the CME give an excel-
lent approximation.
6-8
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APPENDIX: k"p FOR THE DUAL FIELD

The purpose of this appendix is twofold: first, we deri
the expressions~19! and ~21! for the group velocity disper-
sion given in the text; second, we justify the statements m
before Eq.~30! concerning the behavior of quantities such
vmk andumk near a band gap. We start by using Eqs.~2! and
~3! in Maxwell’s equations in order to generate a set of eq
tions typical of those used ink•p analyses@14#,

05~V̂k2m0vmk
2 !umk , ~A1!

05F ]V̂k

]k
2m0

]~vmk
2 !

]k
Gumk1@V̂k2m0vmk

2 #
]umk

]k
,

05F ]2V̂k

]k2
2m0

]2~vmk
2 !

]k2 Gumk

12F ]V̂k

]k
2m0

]~vmk
2 !

]k
G]umk

]k

1@V̂k2m0vmk
2 #

]2umk

]k2
,

where the second and third equations in Eqs.~A1! are thek
derivatives of the first equation, and where we have defi
the differential operator

V̂k52
1

« S ]

]z
1 ik D 2

1
«z

«2 S ]

]z
1 ik D ~A2!

with «z5d«/dz. Multiplying the second equation in Eqs
~A1! by upk* , and integrating overd, the length of one unit
cell gives

K upkU]umk

]k L dz52

K upkU ]V̂k

]k
UumkL

m0~vpk
2 2vmk

2 !
, ~A3!

where we have defined a notation for the overlap integra

^AuÔuB&5E
0

d

A* ~ÔB!dz,

whereÔ is a differential operator. In writing down Eq.~A3!
we have assumed thatumk is orthogonal to]umk /]k, as is
usual ink•p analyses. The only consequence of this is t
theumk will in general not be normalized in the same way
theumk0

, and thus theumk will not be normalized in the sam

way as theumk0
. We adopt this conventiononly in this ap-

pendix, and not in the text. Our first purpose in this appen
02660
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is to derive expressions for the group velocity dispersion
the wave numberk0, which will be expressed in terms o
Bloch functions atk0, so the normalization of the othe
Bloch functions is ultimately unimportant. Our second pu
pose involves rewritingum(k01K).umk0

eiKz, so that the nor-
malizationis important. However, we will show that our ap
proximation to the Bloch functions at wave numberk01K is
correctly normalized to the desired order in perturbat
theory.

Multiplying the third equation in Eqs.~A1! by umk* and
integrating overd we find an expression for the group velo
ity dispersion~GVD!,

]2vmk

]k2
52

1

vmk
(

qÞm
S ~vqk1vmk!

2

~vqk
2 2vmk

2 !
vqmvmqD

1 K umkU 1

m0«vmk
UumkL 2

1

vmk
S ]vmk

]k D 2

,

~A4!

where we have defined a group velocity matrix element

vmn~k!5
1

m0

F K umkU ]V̂k

]k
UunkL

~vmk1vnk!
G . ~A5!

At the band edge, the quantity]vmk /]k vanishes so that, for
the upper band,

]2vuk0

]k2
5

1

vuk0
H 2S v0

D D v luvul

2 (
qÞu,l

S ~vqk0
1vuk0

!2

~vqk0

2 2vuk0

2 !
vquvuqD

1 K uuk0
U 1

m0« Uuuk0L J . ~A6!

Because we are assuming thatD!v0, and that other bands
in the system are distant from the band of interest, the fi
term in the brackets will be much larger than the second
will also be much larger than the third, as can be seen
noting the following. The quantity«(z)>1, so

K uuk0
U 1

m0« Uuuk0L ,c2^uuk0
uuuk0

&5c2.

The quantityvulv lu is on the order ofc2, so the ratio of the
third term to the first term is approximatelyD/v0. We define
a smallness parameterh5D/v0 so that

]2vuk0

]k2
52

v luvul

D
@11O~h!#, ~A7!
6-9
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where we have used the fact thatv0 /vuk0
.1. In the text we

have definedvg[2 ivul(k0).
We now turn to the second issue of this appendix. We s

by expanding an arbitraryumk(z) as a linear combination o
the u’s at wave numberk0,

umk~z!5(
n

gmk
nk0unk0

~z!, ~A8!

where thegmk
nk0 are not functions ofz. We evaluategmk

nk0 by
taking a Taylor series,

ulk5ulk0
1KS ]ulk

]k c
K50

D 1•••, ~A9!

uuk5uuk0
1KS ]uuk

]k c
K50

D 1•••,

where we have definedK[k2k0. We now place a restric
tion on the maximum allowable value ofK in our theory,
Kmax/(p/d)5O(h2), which allows us to ignore theK2 and
higher-order terms in the expansion~A9!. An expression for
]umk /]kcK50 can be found by writing

]umk

]k
cK505(

q
aquqk0

52
1

m0
(

q
F K uqk0

U ]V̂k

]k
Uumk0

L
~vqk0

2 2vmk0

2 !
G uqk0

,

~A10!

where we have used Eq.~A3!. We assume that the value o
the overlap integrals,̂uqk0

u]V̂k /]kuumk &, will be of roughly

0

o

02660
rt

the same order, in which case terms withqÞu,l will be
O(h) with respect to terms withq5u,l . Because of this we
can write, to lowest order inh,

ulk.g lk
lk0ulk0

1g lk
uk0uuk0

, ~A11!

uuk.guk
lk0ulk0

1guk
uk0uuk0

with

g lk
lk051, guk

lk052 ivg

K

D
, ~A12!

guk
uk051, g lk

uk052 ivg

K

D
.

This means that a Bloch function in the upper band, say,
be written as

uuk5(
b

guk
bk0ubk0

eiKz.S uuk0
2 ivg

K

D
u lk0DeiKz.

~A13!

Now, sincevg is of orderv0 /(p/d), and because we hav
assumed thatKmax/(p/d)5O(h2), we find that vgKmax/D
.O(h), so we can write

uuk5uuk0
eiKz1O~h!, ~A14!

u lk5u lk0
eiKz1O~h!.

These expressions foruuk andu lk are used to determine th
portion of the Hamiltonian that generates the nonlinear
namics. Althoughuuk andu lk are not, strictly speaking, nor
malized according to Eq.~4!, they are normalized toO(h).
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